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TWO-DIMENSIONAL GAS VORTICES AND TWISTED GAS JETS

UDC 533 + 517.9A. P. Chupakhin

This paper studies an invariant solution of rank one of the equations of motion of a polytropic gas
that describes two-dimensional gas vortices and twisted gas jets. Flow types are classified according
to the governing parameter: vortices in the form of sources and sinks, unlimited expansion, and
collapse.

Key words: invariant solution, two-dimensional gas vortices, twisted gas jet, analytical descrip-
tion of flow.

1. Description of the Submodel. The equations of polytropic gas dynamics admit the Lie symmetry
algebra L13 [1]. The optimal system of subalgebras ΘL13 of the algebra L13 was constructed in [2], and a description
of all submodels of polytropic gas dynamics that admit three-dimensional symmetry algebras is given in [3, 4].
A description of 37 of these submodels that specify invariant solutions of rank one and have a normalizer of larger
dimension is presented in [5]. For most of these models, the factor-systems are integrated in finite form or are
reduced to finite formulas and one implicit ordinary differential equation.

The present paper studies one of the indicated submodels, whose equations are integrated by a more complex
scheme.

Let us consider the three-dimensional subalgebra

L3.56 = 〈∂x, ∂t, t ∂t + x · ∂x + a(ρ ∂ρ + p ∂p)〉 (1.1)

from the optimal system of subalgebras ΘL13 of the Lie symmetry algebra L13 of the equations of polytropic gas
dynamics (the subalgebra number corresponds to the list in [2]). The normalizer [1] of this three-dimensional
subalgebra is a subalgebra of dimension seven. This suggests that the equations of the submodel have intermediate
integrals. In (1.1), x = (x, y, z); a �= 0 is an arbitrary parameter. We construct an invariant solution of rank one
for the algebra L3.56. This solution is conveniently represented in cylindrical coordinates with the Ox axis which
are related to Cartesian coordinates by the formulas

x = x, y = r sin θ, z = r cos θ,

v = V cos θ − W sin θ, w = V sin θ + W cos θ,
(1.2)

where V and W are the radial and circumferential velocity components.
The third operator of algebra (1.1) in coordinates (1.2) becomes t ∂t + x∂x + r ∂r + a(ρ ∂ρ + p ∂p). The

invariants of the algebra L3.56 written in cylindrical coordinates have the form

θ, u, V, W, r−aρ, r−ap, (1.3)

where θ is the polar angle in the plane R
2(y, z), u is the velocity component along the Ox axis, p is the pressure,

and ρ is the gas density. The equation of state has the form p = sργ , where s is an entropy function and γ > 1 is
the adiabatic exponent.
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According to (1.3), the invariant solution is represented as

u = U(θ), V = V (θ), W = W (θ), ρ = raR(θ), p = raP (θ), s = ra(1−γ)S, (1.4)

where S = PR−γ . Hence, expressions (1.4) are a solution with variable entropy. An isentropic solution is possible
only for γ = 1 and PR−1 = S0 = const. In the present paper, this case is not considered. The invariant functions
U , V , W , R, P , and S satisfy the factor-system

WU ′ = 0, WV ′ + aP/R = W 2, WW ′ + P ′/R = −V W,

WR′ + (a + 1)RV + RW ′ = 0, WP ′ + (a + γ)PV + γPW ′ = 0, (1.5)

a(1 − γ)V S + WS′ = 0

(the prime denotes derivatives with respect to θ). System (1.5) is invariant under the transformation W → −W ,
θ → −θ, which corresponds to a change in the reference direction of the polar angle. Hence, we can consider only
the case W > 0. The last equation in system (1.5) — the equation for entropy — is a consequence of the previous
two equations. This equation is given because the function S is used for the further transformation of the system.
The sound velocity c is calculated by the formula c2 = γp/ρ. From formulas (1.4), it follows that this quantity is
invariant [c2 = c2(θ) = γP/R] and satisfies the equation

W (c2)′ + (γ − 1)(V + W ′)c2 = 0. (1.6)

In the coordinate system (x, r, θ), the vortex ω = rotu of the velocity field u given by expressions (1.4) is written
as

ω = (r−1(W − V ′), r−1U ′, 0). (1.7)

Generally, ω �= 0.
System (1.5) has a nontrivial constant solution in which the radial velocity component V ≡ 0 and the

remaining functions in the solution are given by the formulas

U = U0, W 2 = W 2
0 = ac2

0/γ, R = R0, P = P0, (1.8)

where P0 and R0 are the integration constants; c2
0 = γP0/R0. From Eq. (1.8) it follows that this solution exists

only for a > 0. This solution corresponds to gas motion in a round tube whose streamlines are screw lines:

x = (r0U0/W0)θ + x0, r = r0.

The values θ = θ0 = 0, r = r0, and x = x0 specify some position of a gas particle on a streamline.
Solution (1.4), which is a new solution not studied previously, generalizes the classical two-dimensional self-

similar solutions of the gas dynamics equations [6, 7] and differs from the solutions considered by Ovsyannikov [8]
and from conical flows [9].

2. Transformation of System (1.5). Next, we will assume that W �≡ 0. Otherwise, from Eqs. (1.5)
and (1.6) and the equation of state, it follows that P = R = 0. To integrate system (1.5), we use the method
of straightening derivatives which was employed in [10] to study the regular partially invariant solutions of the
equations of gas dynamics. For W �≡ 0, instead of θ we introduce the new independent variable σ = σ(θ) which
straightens the derivative W (d/dθ), so that

W
df

dθ
=

df

dσ
,

dσ

dθ
=

1
W

(2.1)

for any smooth function f = f(θ). We consider the second equation (2.1) as an expression for the velocity compo-
nent W :

W = θσ, (2.2)

taking into account that θ = θ(σ). The parameter σ, which changes along the streamlines, plays the role of time,
specifying the rate of variation in the polar angle θ. This change is biunique for the sign definite function W .
The value W = 0, which is a singular point of the solution, separates motions with W > 0, for which the angle
θ increases monotonically, from motions for which W < 0 and θ decreases during gas particle motion. As noted
above, system (1.5) is invariant under the involution: W → −W and θ → −θ.
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Introducing the quantity

q = ln S (2.3)

into the equation for entropy [the last equation in system (1.5)] and recalculating the derivative by formula (2.1),
we express the velocity component V in terms of the derivative of the entropy:

V =
1

a(γ − 1)
W (ln S)′ =

1
a(γ − 1)

(ln S)σ =
qσ

a(γ − 1)
. (2.4)

For W �≡ 0, the first equation of system (1.5) implies that U = U0 = const. After division by R and P and
substitution of expression (2.2) and (2.4), the fourth and fifth equations of this system become

(ln R)σ +
a + 1

a(γ − 1)
qσ +

θσσ

θσ
= 0, (ln P )σ +

a + γ

a(γ − 1)
qσ + γ

θσσ

θσ
= 0. (2.5)

As a result of integration, Eqs. (2.5) leads to the representations

R = R0

(
θσ e

a+1
a(γ−1) q

)−1

, P = P0

(
θγ

σ e
a+γ

a(γ−1) q
)−1

, (2.6)

where R0 and P0 are integration constants. Equation (2.6) leads to the expression

P

R
=

P0

R0
θ1−γ

σ e−q/a . (2.7)

Substitution of (2.2), (2.4), and (2.7) into the second equation of system (1.5) yields

qσσ = a(γ − 1)
(
θ2

σ − aP0

R0
θ1−γ

σ e−q/a
)
. (2.8)

After transformation to the new variables, the third equation in (1.5) becomes

θσσ +
P0

R0
e

a+1
a(γ−1) q

( 1

θγ
σ e

a+γ
a(γ−1) q

)
σ

= − 1
a(γ − 1)

θσqσ. (2.9)

After some transformations, Eq. (2.9) reduces to the equation
(
θγ+1

σ − γP0

R0
e−q/a

)
θσσ − (a + γ)P0

a(γ − 1)R0
e−q/a qσθσ +

θγ+2
σ qσ

a(γ − 1)
= 0. (2.10)

Thus, the following statement is proved.
Lemma 1. The factor-system (1.5) for solution (1.4) reduces to the system of two equations (2.8) and (2.10)

for the two functions θ and q given by formulas (2.1) and (2.3) and dependent on the variable σ.
Since Eqs. (2.8) and (2.10) do not explicitly contain the required function θ, their order can be reduced by

introducing the new functions Q = Q(q) and Θ = Θ(q):

qσ = Q(q), θσ = Θ(q). (2.11)

Equations (2.11) lead to the following formulas for the second derivatives:

qσσ = Qqqσ = QQq, θσσ = Θqqσ = QΘq. (2.12)

Substituting (2.11) and (2.12) into (2.8) and (2.10), we obtain the equations

QQq = a(γ − 1)
(
Θ2 − ac2

0

γ
Θ1−γ e−q/a

)
; (2.13)

QΘ1+γΘq − c2
0 e−q/a QΘq − (a + γ)c2

0

γa(γ − 1)
e−q/a QΘ +

QΘγ+2

a(γ − 1)
= 0. (2.14)

It should be noted that Eq. (2.14) can be divided by the nonzero multiplier Q �= 0, and, as a result, it
becomes an equation for determining the function Θ. Solving this equation, from (2.13) we find the function Q.
Thus, the equations of system (1.5) were split and, hence, can be integrated sequentially.

Instead of q, it is convenient to introduce the new independent variable λ:

λ = e−q/a . (2.15)
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Then, q = −a lnλ. We note that λ > 0. The derivatives are recalculated by the formula

fq = −λfλ/a. (2.16)

Making the replacement (2.15) in (2.13) and (2.14) and calculating the derivatives by formula (2.16), we obtain the
following theorem.

Theorem 1. The factor-system (1.5) of solution (1.4) reduces to the system of two first-order equations

dΘ
dλ

=
1

γ − 1
Θ(Θγ+1 − (c2

0(a + γ)/γ)λ)
λ(Θγ+1 − c2

0λ)
; (2.17)

(Q2)λ =
2a2(γ − 1)

λΘγ−1

(ac2
0

γ
λ − Θγ+1

)
(2.18)

for the functions Θ = Θ(λ) and Q = Q(λ) given by formulas (2.11).
3. Transformation and Integration of Eq. (2.17). Let us show that Eq. (2.17) can be integrated. In

(2.17), making the replacement of the function by the formula

w = Θγ+1, (3.1)

we obtain the equation

dw

dλ
=

γ + 1
γ − 1

w(w − α0λ)
λ(w − c2

0λ)
, (3.2)

where

α0 = c2
0(a + γ)/γ. (3.3)

Equation (3.2) is homogeneous, and the replacement of the required function

v = w/λ (3.4)

reduces it to the equation with split variables.
Substituting (3.4) into (3.2) and performing some transformations, we obtain the equation

λ
dv

dλ
=

2(v2 + β0v)
(γ − 1)(v − c2

0)
, (3.5)

where the constant β0 = (c2
0(γ − 1) − α0(γ + 1))/2, according to (3.3), has the form

β0 = −c2
0(a + (a + 2)γ)/(2γ). (3.6)

The general solution of Eq. (3.5) is represented as the integral
∫

(v − c2
0) dv

v2 + β0v
=

2
γ − 1

ln
λ

λ0
, (3.7)

where λ0 is the integration constant.
The integral on the left side of formula (3.7) is taken in elementary functions, and the solution of Eq. (3.5)

is given by the formula

|v + β0|1+c2
0/β0v−c2

0/β0 = (λ/λ0)2/(γ−1), (3.8)

where β0 �= 0. Substituting representation (3.4) into formula (3.8), we obtain the solution in terms of the function w:

|w + λβ0|1+c2
0/β0w−c2

0/β0 = λ(γ+1)/(γ−1)λ
−2/(γ−1)
0 . (3.9)

We note that, according to (3.6),

1 +
c2
0

β0
=

a(γ + 1)
a(γ + 1) + 2γ

,
c2
0

β0
= − 2γ

a(γ + 1) + 2γ
. (3.10)

Substituting expression (3.1) for w and the values of the powers from (3.10) into formula (3.9), we obtain the
solution in terms of the function Θ:

|Θγ+1 + λβ0|
a(γ+1)

a(γ+1)+2γ = λ
− 2

γ−1
0 λ

γ+1
γ−1 Θ

2γ
a(γ+1)+2γ . (3.11)
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For β0 = 0, which corresponds to the value a = −2γ/(γ + 1), integral (3.7) is simplified and becomes
∫ (1

v
− c2

0

v2

)
dv =

2
γ − 1

ln
λ

λ0
.

In this case, the solution is given by the formula

ln v +
c2
0

v
=

2
γ − 1

ln
λ

λ0
. (3.12)

Formula (3.12) can be reduced to the form

v ec2
0/v = (λ/λ0)2/(γ−1). (3.13)

Substitution of the values of v from (3.4) and (3.1) into (3.13) yields

Θγ+1 exp (c2
0λΘ−(γ+1)) = λ

−2/(γ−1)
0 λ(γ+1)/(γ−1). (3.14)

Let us formulate the result as the following statement.
Theorem 2. The general solution of Eq. (2.17) is given the formula (3.11) for β0 �= 0 and by formula (3.14)

for β0 = 0.
Relations (3.11) and (3.14) are implicit differential equations [11] for the derivatives θq (or θσ).
4. Sound Characteristics, Integral of Motion, and Vorticity. Let us represent some physical flow

parameters corresponding to solution (1.4) in terms of the variables λ and v.
In the description of gas motion, an important role is played by sound characteristics — the surfaces or

curves in physical space on which the gas velocity component normal to them is equal to the sound velocity [6, 7].
The sound characteristics specified in the physical plane by the beams θ = θ0 (or by half-planes of this form in
three-dimensional space) are given by the equation W 2 = c2, which, for solution (1.4), becomes

W 2(θ) = γP (θ)/R(θ). (4.1)

Substituting representation (2.2) for W and (2.7) for P/R into (4.1), we obtain the equation of the characteristics
in the form Θγ+1/λ = c2

0 or [in terms of (3.4)] in the form v = c2
0.

Lemma 2. The sound characteristics of the equations of gas dynamics for solution (1.4) that correspond
to the beams θ = θ0 in the physical plane (or to half-planes in the three-dimensional case) are specified in the
plane R

2(λ, v) by the horizontal straight lines

v = c2
0.

As a result, the integral of motion relating the radial coordinate of a gas particle and entropy in solution (1.4)
is obtained in terms of the variable λ. The equation of the flow streamlines in the plane R

2(y, z) has the form

dr

V
=

r dθ

W
. (4.2)

Substituting the differential dσ = dθ/W from (2.1) into (4.2) and integrating this equation, we obtain

ln
r

r0
=

∫
V (σ) dσ, (4.3)

where r0 is the integration constant that corresponds to the initial position of the gas particle on the streamline.
Substituting representation (2.4) for V into (4.3) and transforming to the variable λ [see (2.15)], we obtain the
following streamline equation:

r = r0(λ0/λ)γ−1. (4.4)

The initial position r0 of the gas particle corresponds to the value λ0 of the parameter λ characterizing the entropy.
Since γ − 1 > 0, from formula (4.4) it follows that r decreases with increasing λ and increases otherwise.

Let us calculate the vortex (1.7) in terms of the variables v and λ. According to (1.7), we have ω = (ω1, ω2, 0)
for solution (1.4). In Sec. 2, it was found that, for W �= 0, U = U0 = const, and, hence, ω2 = r−1Uθ = 0. We
calculate the first vortex component ω1 by substituting representations (2.2), (2.4), and (2.11) for the velocity
component into (1.7):
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ω1 =
1
r

(W − Vθ) =
1
r

(
θσ − qσσ

a(γ − 1)θσ

)
=

1
rΘ

(
Θ2 − (Q2)q

2a(γ − 1)

)
. (4.5)

The further transformation of (4.5) is performed using Eq. (2.13) and formulas (2.15), (3.1), and (3.4):

ω1 =
ac2

0

γr
λΘ−γ =

ac2
0

γr
λ1/(γ+1)v−γ/(γ+1). (4.6)

Substituting the value of r from integral (4.4) into (4.6), we finally obtain the following formula for the nonzero
vortex component in solution (1.4):

ω1 =
ac2

0

γr0λ
γ−1
0

(λγ2

vγ

)1/(γ+1)

. (4.7)

Lemma 3. The nonzero vortex component in solution (1.4) in terms of the variables (λ, v) is given by
formula (4.7). The vortex increases in absolute value with increasing λ or decreasing v.

5. Investigation of Singularities of the Solution. The analytical solution (1.4) is given by formu-
las (3.11) and (3.14). These formulas are bulky and difficult to analyze, and, in addition, they describe the
intermediate integrals of solution (1.4) in terms of its first derivatives (2.11).

Important information on solution (1.4) can be obtained by analyzing the singular points and manifolds of
Eq. (3.5) [12]. In this case, the solution is obtained as a function of the parameter λ and, hence, as a function of
the variable entropy. To determine the dependence of the entropy on the spatial coordinates, it is necessary to solve
Eq. (3.14) as a differential equation for the function Θ(q) given by relation (2.11).

Along with Eq. (3.5), we consider the system of equations corresponding to it:

v̇ = 2(v2 + β0v)/(γ − 1), λ̇ = λ(v − c2
0), (5.1)

where the point denotes derivatives with respect to the parameter.
For any values of β0, system (5.1) has a singular point O with the coordinates λ0 = 0 and v0 = 0. For

β0 > 0, the point O is the unique singular point; for β0 < 0, the singular point P1 appears at which λ1 = 0 and
v1 = −β0. We recall that, according to (2.15), λ > 0 and we consider values Θ > 0; therefore, v > 0. Thus, the
analysis is performed in the first quarter of the plane R

2(λ, v).
From (3.6), it follows that β0 > 0 for a(γ + 1) + 2γ < 0. We introduce the characteristic parameter

a∗ = −2γ/(γ + 1) < 0.

Then,

β0 > 0 at a < a∗, β0 < 0 at a > a∗. (5.2)

Since γ > 1, the value of a∗ does not vanish. From (5.2) it follows that, for negative values of the parameter a,
β0 > 0, and for β0 < 0, the values of a can be both negative [a ∈ (a∗, 0)] and positive (a > 0).

From the right side of Eq. (3.5), it follows that as v → c2
0, the derivative dv/dλ → ∞. This implies that the

tangent to the integral curves becomes vertical. After Eq. (3.5) is resolved for the derivative dλ/dv, this derivative
will vanish on the straight line v = c2

0. Thus, at the points of the straight line v = c2
0, there may be an ambiguity

of the solution in terms of the function v = v(λ) or a local extremum of the function λ = λ(v). The occurrence of
these cases depends on the behavior of the integral curves in passing through the straight line v = c2

0.
The integral curves above the straight line v = c2

0 correspond to supersonic gas flow in which the circumfer-
ential velocity component exceeds the sound velocity. The integral curves below the straight line v = c2

0 correspond
to gas motion with |W | < c; however, this motion can be supersonic because its radial velocity component V �= 0.

The Jacobi matrix of the right sides of system (5.1) is equal to

J =

[
2(2v + β0)/(γ − 1) 0

λ v − c2
0

]
. (5.3)

Then, the matrix J for v = 0 has the eigenvalues

k1 = 2β0/(γ − 1), k2 = −c2
0 < 0. (5.4)
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Fig. 1. Integral curves for β0 > 0.

At the point P1, matrix (5.3) has the spectrum (β0 < 0)

k1 = − 2β0

γ − 1
> 0, k2 = −β0 − c2

0. (5.5)

Thus, three cases are possible.
1. Let β0 > 0. Then, a < a∗ < 0. There is a unique singular point O, at which, according to (5.4), k1 > 0

and k2 < 0. The point O is a saddle, whose separatrices are the coordinate axes; on the λ axis, the gas moves
toward the coordinate origin O(0, 0), and on the v axis, in the opposite direction. The phase portrait of the integral
curves is presented in Fig. 1. The integral curves intersect the straight line v = c2

0 at a right angle, and two values
of v correspond to each value of λ.

According to (2.15), for a < 0, the quantities λ and q decrease or increase simultaneously. From (2.3), it
follows that, an increase in the entropy S leads to an increase in the quantity q and, hence, in λ in the solutionİn
this case, solution (1.4) in the region v > c2

0 can be treated as a supersonic vortex sink. The gas particles start
from the characteristic — the straight line v = c2

0 — and move on the integral curves above this straight line. This
motion corresponds to an increase in the entropy and [according to (4.4)] to the gas particle motion to the center
(coordinate origin). According to Lemma 3, the vorticity of this motion increases.

The integral curves below the straight line v = c2
0 correspond to the gas motion that ceases on the sound

characteristic. For this motion, the entropy decreases and the gas particles move away from the coordinate origin,
which is a vortex source.

2. Let β0 < 0 and −β0 − c2
0 < 0. Then, a∗ < a < 0. There are two singular points O and P1. According to

(5.4), at the point O, k1 < 0, k2 < 0, i.e., the point O is an attracting node. According to (5.5), at the point P1

k1 > 0, k2 < 0, i.e., the point P1 is a saddle. On the separatrix that is the Ov axis, motion starts from the singular
point P1 and the separatrix of the saddle v = −β0 enters the singular point P1. Because, on the segment OP1 of
the Ov axis, v + β0 < 0, according to (5.1), it follows that v < 0 and motion occurs from the point P1 to the
point O. On the Oλ axis, motion is also directed toward to the point O. The integral curves for this case are shown
in Fig. 2, and the solution is three-valued.

Each value λ correspond to three values of v. Because a < 0, as in case 1, the variables λ and S decrease
or increase simultaneously. The regions in which the sign of the derivative changes, we denote A, B, and C (see
Fig. 2). The solution in the regions B and C coincides with the solution in the case β0 > 0. In the region A, the
solution is defined for which there are gas expansion (to infinity) and a decrease in the entropy.

3. Let β0 < 0 and −β0 − c2
0 > 0. Then, according to (5.3), a > 0. From (5.4) and (5.5), it follows that the

point O is an attracting node, and, at the point P1, k1 > 0 and k2 > 0, i.e., it is a repulsing node. The integral
curves for this case are shown in Fig. 3.
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Fig. 3. Integral curves for β0 < −c2
0.

According to formulas (2.3) and (2.15), for a > 0, the entropy S increases with decreasing λ. The solution
is three-valued, as in case 2.

In the region A, the solution describes the gas flow issuing from the sound characteristic. This solution
corresponds to gas expansion to infinity, the radius increases without bound, and the flow entropy also increases.
In the region B, the solution describes a supersonic gas sink that ends on the sound characteristic v = c2

0. The
solution in the region C corresponds to supersonic gas flow in which the particles start from infinity and gather at
the collapse points λ = ±∞ corresponding to the value r = 0.

For β0 = 0, when a = a∗, the system has one degenerate singular point O. At this point, according to (5.4),
k1 = 0 and k2 < 0. The description of the behavior of the integral curves in the vicinity of the point O can be
obtained by using the methods described in [12] or by using the formula of solution (3.13), which, in this case, has
a relatively simple form. In this case, the pattern of the integral curves is similar to that observed in case 1.

Thus, the qualitative analysis of the singularities of Eq. (3.5) provides important information on solu-
tion (1.4). The further investigation of this solution should include an analysis of the implicit differential equa-
tions (3.11) and (3.14) and investigation of the solution of the system of four equations (2.11), (2.13), and (2.14).
This investigation is based on the analysis of the behavior of the solution of Eq. (3.5) performed in the present
paper for various values of the parameter a (Fig. 4).
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Fig. 4. Types of singular points versus parameter a.

6. Conclusions. Solution (1.4), which is of interest from a point of view of physics, describes not only
two-dimensional gas vortices but also spatial twisted gas jets. Indeed, solution (1.4) corresponds to the case
U = U0 = const. For U0 �= 0, the solution describes three-dimensional motion of a twisted round gas jet at constant
velocity U0 along the Ox axis. The shape of the jet cross section changes: it is enlarged or narrowed according
to the description given in Sec. 5. In this case, the sound characteristics θ = θ0 are half-planes which start from
the Ox axis. Both the regimes of unlimited expansion of the jet to infinity and compression of its collapse to
the symmetry axis are possible. For U0 = 0, the gas motion is two-dimensional, and the solution describes two-
dimensional gas vortices. For a detailed description and physical treatment of these regimes, it is necessary to
analyze the solutions of Eqs. (3.11) or (3.14).
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